Magnetically controlled current flow in coupled-dot arrays
نویسندگان
چکیده
Quantum transport through an open periodic array of up to five dots is investigated in the presence of a magnetic field. The device spectrum exhibits clear features of the band structure of the corresponding one-dimensional artificial crystal which evolves with varying field. A significant magnetically controlled current flow is induced with changes up to many orders of magnitude depending on temperature and material parameters. Our results put forward a simple design for measuring with current technology the magnetic subband formation of quasi one-dimensional Bloch electrons. PACS numbers: 73.23.Ad, 73.21.La, 73.20.At, 73.23.-b
منابع مشابه
Conductance in quantum wires by three quantum dots arrays
A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...
متن کاملConductance in quantum wires by three quantum dots arrays
A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...
متن کاملBistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit
We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...
متن کاملFull capacitance matrix of coupled quantum dot arrays : static and dynamical effects
We numerically calculated the full capacitance matrices for both one-dimensional (1D) and two-dimensional (2D) quantum-dot arrays. We found it is necessary to use the full capacitance matrix in modeling coupled quantum dot arrays due to weaker screening in these systems in comparison with arrays of normal metal tunnel junctions. The static soliton potential distributions in both 1D and 2D array...
متن کاملJosephson current through a quantum dot coupled to a molecular magnet
Josephson currents are carried by sharp Andreev states within the superconducting energy gap. We theoretically study the electronic transport of a magnetically tunable nanoscale junction consisting of a quantum dot connected to two superconducting leads and coupled to the spin of a molecular magnet. The exchange interaction between the molecular magnet and the quantum dot modifies the Andreev s...
متن کامل